Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions.
نویسندگان
چکیده
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O(2)-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O(2)-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO(2)(-)-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO(2)(-)-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO(3)(-)-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N(2)). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.
منابع مشابه
The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability.
The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in h...
متن کاملThe enhancement by surfactants of hexadecane degradation by Pseudomonas
The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in h...
متن کاملQuorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems
Here, we show that quorum sensing (QS) modulates the current generation of the anode-respiring bacterium Pseudomonas aeruginosa because it controls the production of phenazines, which mediate the electron transfer to the anode. The current generation by a wildtype (WT) strain P. aeruginosa PA14 and the GacS/GacA protein-regulatory mutant retS was investigated under different environmental condi...
متن کاملInvolvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1.
Two transmembrane proteins were tentatively classified as NarK1 and NarK2 in the Pseudomonas genome project and hypothesized to play an important physiological role in nitrate/nitrite transport in Pseudomonas aeruginosa. The narK1 and narK2 genes are located in a cluster along with the structural genes for the nitrate reductase complex. Our studies indicate that the transcription of all these g...
متن کاملDenitrifying Pseudomonas aeruginosa: some parameters of growth and active transport.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2000